
The Design of a Templated C++ Small Vector

Class for Numerical Computing

Patrick J. Moran*

Advanced Management Technology, Incorporated

NASA Ames Research Center, M/S T27A-2

Moffett Field, CA, 94035, USA

NAS Technical Report NAS-00-013

June 20, 2000

Abstract

We describe the design and implementation ofa templated C++ class for vec-

tors. The vector class is templated both for vector length and vector component

type; the vector length is fixed at template instantiation time. The vector imple-

mentation is such that for a vector of N components of type T, the total number

of bytes required by the vector is equal to g * sizeof (T), where sizeof is

the built-in C operator. The property of having a size no bigger than that required

by the components themselves is key in many numerical computing applications,

where one may allocate very large arrays of small, fixed-length vectors.

In addition to the design trade-offs motivating our fixed-length vector design

choice, we review some of the C++ template features essential to an efficient,

succinct implementation. In particular, we highlight some of the standard C++

features, such as partial template specialization, that are not supported by all com-

pilers currently. This report provides an inventory listing the relevant support cur-

rently provided by some key compilers, as well as test code one can use to verify

compiler capabilities.

1 Introduction

Vectors are a commonly occurring type of object in many software efforts. Their preva-

lence and utility led the designers of the Standard Template Library (STL) [MS96] to

make vectors one of the basic classes in their library. This library in turn was adopted

by the C++ standards committee, thus the STL vector class is now a standard part of

C++ [ISO98]. STL vectors are quite general and flexible. They can be dynamically

*pmo ran@has .nasa . gov

grown and shrunk, and adapted to implement other collection types such as stacks and
lists. The fact that STL vector instances can dynamically grow to arbitrary size implies

that their implementation contains some indirection, typically a pointer to a buffer that
is dynamically allocated to the appropriate size. This in turn implies that the total
amount of memory required by an STL vector is greater than the memory required to
store the vector elements. At minimum there is the extra memory for the pointer to

the data buffer. Typically, there is also the memory required for internal bookkeeping
values, such as an integer storing the currently allocated vector length. When using
a small number of vector objects, this overhead is typically unimportant. When al-

locating large arrays of small vectors, the overhead can be significant. Scenarios in
numerical computing where one allocates arrays consisting of millions of small, fixed-

length vectors occur frequently, thus one obvious optimization is to develop a vector
class that trades off dynamically changeable length for a smaller memory footprint.

Even with a fixed-length vector class, there are design trade-offs to be made in

order to keep the memory requirement of each instance equal to that of the components
alone. In particular, we choose to not make the vector classes polymorphic. In C++,
polymorphism is supported via virtual functions. Each instance of a class with any
virtual functions contains a pointer to a virtual function table, thus the size of each
instance includes the size of a pointer. Note that the virtual functions could be defined

in our vector class, or they could be inherited if our class inherits from another class.
One scenario where this could happen occurs if all objects are required to inherit from a
common base class. The base class typically declares interface common to all objects,
for instance, serialization routines for network communication and persistence. Having

such common functionality for all objects is handy, but it comes at a memory cost that
we cannot afford for our vector design.

The template vector class we describe here is not the first templated small vector
design to address numerical computing needs. The second edition of the Field Encap-

sulation Library (FEL) [MHE00, MH00] contained vector classes that were used ex-
tensively throughout the library. FEL vectors were templated by component type, but
not by length. One could not compose matrices as vectors of vectors (see Section 2.4
below). The Blitz++ [Bli] library is another effort towards high-performance numeric
computing using C++ and templates. Blitz++ contains a class called TinyVector
that is similar to the class we describe in that it is templated by component type and

length. The interface of TinyVector contains some features our vector class does
not have, such as iterator definitions, but lacks some of the basic features that we will
need, such as definitions for operator+.

The next section presents the criteria we used in making our vector class design

choices, followed by a discussion covering the salient features of our implementation.
Because the template standards for C++ have been finalized relatively recently, and
because support is nontrivial to implement, one still cannot assume that every com-

piler will handle templated code correctly. Following our implementation discussion
we provide an inventory of the template features our design requires, along with the
compliance of some key compilers. We also provide some example numbers showing
some of the performance implications of our design.

2 Design Criteria

There are four primary criteria guiding our vector design, which we present not neces-
sarily in priority order.

2.1 Memory Layout

In the previous section we described the need for a vector class where the memory
requirement of each instance is equal to that of the vector components alone. In general,
we are interested not only in the amount of memory required, but also in how the data

components are layed out in memory. This interest comes from the desire to be able
to share data arrays with applications that may not be written using our vector class,
or perhaps not written in C++ at all. One of the leading candidates for sharing would

be numerical field solvers. Such applications typically operate with very large numeric
arrays. In the cases where an application has the components for each vector instance
contiguous in memory, we can share the buffer and treat it as an array of our vector

instances. By sharing we can avoid the memory and time consumed by a copy and
reorganize step, a step that can be quite costly and possibly not even feasible when
working with problems close to the capacity of a system.

2.2 Templated Vector Length

A second criterion for our vector class is that it be templated by length. The moti-

vation for this requirement is the desire to develop objects that are templated by the
dimensionality of their base space and the space they are embedded in. For example,

we anticipate developing classes for regular meshes embedded in d-dimensional space.
Such objects naturally have a need for vectors that are also d-dimensional, both for
internal implementation and for the class interface.

2.3 Performance

While we want to have the generality of d-dimensional vectors with a variety of compo-
nent types, we do not want to achieve this at the expense of performance. Furthermore,
we hope to maintain a level of performance such that library users will feel comfortable
using our vector objects rather than hand coding their own vector math.

2.4 Matrices Via Composition

The fourth criterion is probably the least obvious of the four. We want to support

constructing matrices as vectors of vectors. For example, a 3 by 4 matrix of floats
could be declared as FM_vector<3, FM_vector<4, float> >. The syntax for

such declarations is admittedly a bit awkward -- clearly our motivation is not syntax.
We can hide most of the syntax unattractiveness via typede f statements. The motiva-
tion for the design comes from anticipated uses with differential-operator fields. Such
fields require that we compute various partial terms expressing change in field value

with respect to coordinate axes. Given a scalar field, a differential-operator field may

return the partials in a vector, for example in response to a gradient query. Imagine that

the field type is templated, so that the same implementation could be used for any scalar

type. Now imagine if we were to try to use the same differential-operator mechanism

with a vector field. The result of a gradient query would be a vector of vectors contain-

ing all the terms needed for the second order tensor, albeit transposed from the usual

layout. Thus, the same templated code could be useful for both scalar and vector fields.

But this reuse breaks down at compile time if we cannot instantiate vectors of vectors.

In general, we have found composition to be a powerful technique for defining new

objects in terms of other objects (as for example in FEL2 [MHE00, MH00]). We an-

ticipate that support for vector composition could lead to some interesting capabilities

here as well.

As we will see in the following sections, supporting vector of vectors composition

does have some sometimes subtle implications. In short, we must be careful to account

for cases where the vector component type T is not a scalar when we define member

and friend functions for our vector class. We address the specific issues as they arise in

the following sections.

3 Implementation

3.1 The Generic Vector Class

We call our vector class FM_vector I, where FM stands for "Field Model". Eventually

the FM_vector class may be used in support of a larger field model library. The class

provides the basic math operators that one would expect of vectors, though the set of

operators provided in the current implementation is by no means exhaustive.

The beginning of the FM_vector class looks like:

template <int N, typename T>

class FM vector

{
public :

FM vector () {}

FM vector(const T dat[])

{
for (int i = 0; i < N; i++)

d[i] = dat [i] ;

}

1Aclassic problem when writing a library that will be used in application development is avoiding names-
pace collision problems. A namespace collision occurs when multiple libraries use the same identifier name,
for example, vector. The traditional solution to this problem is for each library to add some standard
prefix to all the names it introduces, for example, prefixing vector with FM_to get FM_vector. Recent
C++ offers a second option: the namespace mechanism ([ISO98] §7.3). We have chosen the traditional
solution here because the name we want to use, vector, is likely to already occur in the environment (via

the standard library). Typing FM_vector is just as convenient as typing FM: :vector, and is always
unambiguous.

template <typename S>

explicit FM_vector(const FM_vector<N,S>& dat)

{
for (int i = 0; i < N; i++)

d[i] = (T) dat[i] ;

}

Template parameter N specifies the vector length, T specifies the component type. The

class has three constructors: a default constructor (i.e., without any arguments), a con-

structor taking an array of initialization values, and a constructor taking a same-length

FM_vector of type S components as an argument for initialization. Note that we use

the keyword exp 1 i c i t for the third constructor. Without this keyword, the compiler

may implicitly use the third constructor to convert a vector of one type of component

to a vector of another. Sometimes this is just what we want: for example, to protnote a

vector of floats to a vector of doubles. Unfortunately, at other times such conver-

sions many lead to ambiguity problems for the compiler. Given a particular expression,

the compiler may determine that there is more than one combination of conversions and

functions that it can use to match. Compilers typically treat this as an error. By using

the explicit keyword, we support type conversions, but only if the user explicitly

casts from one type to another. See also for example Meyers ([Mey96] Item 5) for a

discussion of why one should be wary of implicit conversion functions.

A typical example of a mathematical operator, operator-, looks like:

friend FM_vector<N, T>

operator-(const FM_vector<N,T>& lhs,

const FM_vector<N,T>& rhs)

{
T tmp [N] ;

for (int i = 0; i < N; i++)

trap[i] = lhs[i] - rhs[i] ;

return FM_vector<N,T>(tmp) ;

}

The basic design pattern for operator- is followed by other similar operators as

well. Each function contains a temporary array that gets filled in with result values,

and that array is used to initialize the object constructed in the return statement An

alternative style would be to declare an FM_vector<N, T> instance at the beginning

of the routine, fill in each element, then return it, with no constructor in the final state-

ment. Note that the function is still meaningful even if the component type T is a vector

type, i.e., the same template defines subtraction of like-sized matrices.

In designing our vector class, we have to be careful to choose between providing

function declarations and function definitions inside the class definition. A function

declaration specifies a function signature, in other words, a function name, argument

types and return type. A function definition is like a declaration, except that the body of

the function, defining its implementation, is also specified. The distinction is important

because definitions and declarations are treated differently when it comes to template

instantiation. Functions defined within a template class definition will be instantiated

witheachtypethattheclassisinstantiatedwith,evenif theyareneverused([ISO98]
§14.5.3temp.friend,item5).Thispolicyimpactsuswhenweconsidercaseswhere
wewill instantiatevectorsofvectors.Forexample,wewouldrunintoproblemsif
weprovidedFM_dotasafriendfunctiondefinitionwithinourgenericvectorclass.
When the vector class is instantiated with a vector component type, the compiler in

turn would attempt to instantiate each friend function defined in the class. Even though

we never attempt to dot one matrix with another, the compiler would attempt to do the

instantiation. This instantiation would fail when the compiler attempts to instantiate

operator* with corresponding vector components. We do not define operator*

with two vector of scalars arguments (see the following section).

Within our vector class we define a relatively minimal set of operators, a set

constrained by what still makes sense when we compose vectors: [], ==, (unary)

, (binary) -, +, and *. Outside of the class we also provide operators != and

<<. There are other operators that make sense, even with the "must work with vector

of vectors" constraint. We have found the current set of functions sufficient for now.

We also provide friend declarations for FY_dot and FY_cross, with the function

definitions following outside the class.

3.2 Type Traits and operator*

Unlike operators + and -,operator* has naturalsemantics forcases where the

left-hand and right-hand arguments are not of the same dimension. For the present we

will limit ourselves to defining scalar times an FM_vector object, and the commuta-

tive pair. As in the previous section, we have to be careful to consider the case where

the component type is itself a vector. We want the scalar type to match the scalar type

within the FM_vector argument, so we cannot simply hard-code the scalar argument

to be a specific type, e.g., double. Simply using the template component type T

works if we have a vector of scalars, but breaks down if we have a vector of vectors.

The solution is a technique known as type traits [Mye95]. The idea is to use the C++

templated class and specialization mechanism to provide specific information about the

instantiation types that we use elsewhere. In our case we are interested in determining

the scalar element type of the template argument T used in an FM_vector instanti-

ation. If our class is instantiated with T as a scalar, then the element type would be

the same type. IfT corresponds to a FM_vector of some type, then we want the trait

mechanism to recursively obtain the element type of the vector that T corresponds to.

We can express this in C++ as:

template <typename T>

struct FM traits

{
typedef T element type;

};

template <int N, typename T>

struct FM_traits<FM_vector<N,T> >

{
typedef typename FM_traits<T>: :element type element_type;

};

We will revisit the use of template specializations in the next section. For operator*,

usage of the traits mechanism looks like:

friend FM_vector<N, T>

operator*(typename FM_traits<T>: :element_type lhs,

const FM_vector<N,T>& rhs)

{
T tmp [N] ;

for (int i = 0; i < N; i++)

tmp[i] _ lhs * rhs[i];

return FM vector<N,T>(tmp) ;

}

The syntax for using traits is a bit verbose, and perhaps not particularly easy to use

for those not familiar with templates. Fortunately, it is primarily just the FM_vector

library developers who have to worry about getting the syntax right. One case where the

user would have provide his or her own traits specialization, like that for FE_vector

above, would be if he or she instantiated an FM_vector with some othcr non-scalar

type.

3.3 Specializations

So far we have presented an overview of the generic FM_vector class implementa-

tion. The class provides basic vector functionality for vectors of essentially arbitrary

length and component type. Unfortunately, we sacrifice a bit in performance in order

to get such generality. For example, in the definition for operator- presented pre-

viously in Section 3.1, note that we require building up the result in a temporary array

trap before constructing the final result in the return statement. We would like to

avoid use of the temporary when possible. We would also like to avoid the looping

construct, since the overhead could be significant when the vector length N is very

small. In effect we would like to unroll the loop. Fortunately, C++ provides a mech-

anism that enables us to provide these optimizations: specializations ([ISO98] § 14.7,

temp.spec). Specializations are template definitions where one or more template pa-

rameters are fixed, compared to the initial, most general template definition. If some,

but not all the parameters are fixed, then we have a partial specialization ([ISO98]

§ 14.5.4, temp.class.spec). Specializations can be provided for class templates or func-

tion templates, in our library we use both. For our FM_vector class, the most obvious

opportunity for optimization is to provide specializations based on particular vector

lengths. Using such specializations, we can unroll the loops. We can also provide

operator definitions that use patterns more likely to be optimized by the compiler.

Thekeytoourspecializationoptimizationsisprovidinganadditionalconstructor,
onethattakesthevectorcomponentsasarguments.Withinoperatordefinitions,wecan
utilizethisconstructortoavoidthetemporaryarraythatwehadtousepreviously.For
example,withinapartialspecializationforlength-3vectors,wecouldprovideamore
optimizedversionofopera tor- :

friend FM_vector<3,T>

operator-(const FM_vector<3,T>& lhs,

const FM vector<3,T>& rhs)

return FM_vector<3, T> (lhs. d [0] rhs.d[0] ,

lhs.d[l] rhs.d[l] ,

lhs.d[2] rhs.d[2]) ;

)

In addition to eliminating the temporary array and loop, we have a pattern that facili-

tates what is known as a named return value optimization (see for example [Mey96],

Item 20). This is a pattern that many compilers can exploit to avoid creating temporary

objects, at least when one uses the higher optimization levels.

Note in the previous example that a partial specialization is precisely what we

needed. The optimizations do not depend on the type T, they would apply regard-

less of whether T corresponded to int, float, or even FM_vector<3, double>.

When providing specializations, there is in general a trade-offbetween the added per-

formance one can achieve with type specific code on one hand, and the code mainte-

nance implications on the other. Providing many specializations implies having a lot of

nearly-the-same code to manage--which often implies headaches for library maintain-

ers in the long term. Partial specializations help reduce this problem somewhat, since

we can get by with fewer definitions, compared to using full specializations every-

where. Partial specializations, compared to total specializations, also free the author

from having to completely anticipate every instantiation type that the user will care

about. Unfortunately, not every compiler supports partial specializations. We consider

several key compilers and their current compliance with the C++ template standard in

the following section. Our implementation currently provides partial specializations

for vectors of length 1, 2, 3, and 4.

4 Compiler Support

Table 1 lists the current state of affairs when it comes to features required by our tem-

plated vector design. The three compilers families that we are particularly interested

in are Microsoft Visual C++, gnu g++, and SGI MIPSpro. The short summary, as one

can see from the table, is that the three compilers all support the features we need, ex-

cept that the Visual C++ compiler does not handle partial specializations. In general,

proper template handling requires that the compiler have a relatively sophisticated pat-

tern matching mechanism for deciding which implementation to use when it encounters

the need for a particular instantiation. Our experience with the Visual C++ compilcr

has been that their pattern matching mechanism is not particularly robust. The Visual

Feature VC++ 6.0 g++ 2.95.2 MIPSpro 7.3.1.1m

Support for explicit keyword

Templated member functions
Specialization oftemplated classes

Partial specialization of templated classes
Specialization of templated functions
Partial specialization oftemplated functions

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK
OK

OK
OK
OK

Table 1: Current support for some key C++ template language features in the Microsoft
Visual C++ 6.0, gnu g++ 2.95.2 and SGI MIPSpro 7.3.1. Im compilers.

C++ compiler does handle simple matching cases correctly; perhaps the compiler de-

velopers have not encountered enough pressure yet from their user base to make the
correct handling of more sophisticated templates a priority.

As for the gnu and MIPSpro compilers, both were capable of handling our vector
library code. With any compiler, one should be sure to get the current version, as
compliance with the C++ template standard is a recent occurrence at best. One specific

note for the g++ compiler: the g++ shipped with Redhat 6.2 Linux is not especially
current. In particular, the shipped compiler does not support all the features listed in
Table 1. Users of Redhat 6.2 should be prepared to download and install a current g++
in order to successfully compile FM_vector.

5 Performance and Optimization

Table 2 lists example timings for the evaluation of a routine typically used in point
location codes. The routine defines a predicate indicating whether point d is above,

coplanar with, or below the plane defined by points a, b and c (as exactly as we
can calculate using standard floating-point). The rows correspond to increasing levels

of compile-time optimization. The first two float and double columns list per-
formance obtained using the generic FM_vector class. The float and double

headings indicate whether the vectors were composed of single-precision or double-
precision components, respectively. The second pair of float and double columns
repeats the timings, but with the added availability of the class partial specialization for
length-3 vectors. The third pair of columns lists timings when total specializations for
vectors of 3 floats and 3 doubles were available.

Clearly, timings for one particular expression do not provide a thorough analysis of

the performance of the vector library. Nevertheless, we include the table to make two
points. First, note the range in performance obtained by varying the -O optimization.
The FM_vector class is carefully written to use patterns that we expect to optimize

well, but we do not get the benefits at default (-O0) optimization. Authors of high-
performance numerical codes should already be familiar with the importance of using
compiler optimizations; the table shows that optimizations are especially important
when using classes such as FM_vector to represent low-level objects.

The second point of Table 2 is to provide a confirmation that implementing vector

-On
0
1
2
3

Generic Partial Specialization Full Specialization
float double float double float double

2.090 2.000 0.'654 0.610 0.648 0.600

0.362 0.337 0.238 0.218 0.175 0.149

0.354 0.324 0.237 0.216 0.179 0.145
0.360 0.341 0.172 0.145 0.172 0.145

Table 2: Example timings (usec/call) for a routine used in point location consisting of
thefollowingstatement:return sign (FM_dot (d - a, FM_cross (b - a,

c - a))). The timingswere computed on a dual500-MHz Xeon processorwork-

station, using the g++ 2.95.2 compiler. All vectors had length N = 3.

class specializations does indeed significantly improve performance. Comparing the
columns under the Generic heading to those under the Partial Specialization and

Full Specialization headings, we see that the specializations can cut the execution
time roughly in half, compared to the generic implementation. In Section 3.3, we
introduced the idea of providing class specializations for our vector implementation.

Here we confirm that there is a worthwhile performance pay-off due to specializations.
Table 2 also provides a comparison between partial and full specialization. Both

the partial and full specializations essentially rely upon the same optimizations, based

on exploiting specific vector lengths. From the tabIe we can see that the compiler has
an easier time recognizing opportunities for optimization when we provide full special-
izations, but at a high enough optimization we get the same performance with partial
specializations alone. Of course, these timings are for one compiler and one expres-
sion, so they are clearly not the final word on the subject. Our overall philosophy is

to make a concerted effort to maintain high performance over a wide range of vector
instantiation types. To that end we favor optimizations that apply to ordinary (unspe-
cialized) templates over partially specialized templates, and partial specializations over

full specializations. We see two problems with fuI1 specializations. First, supplying full
specializations puts the library authors in the position of having to anticipate which in-
stantiafion types are important to users. Some may be fairly obvious, but if the library

is utilized by a variety of users, then this job can quickly become difficult. Second,
liberally adding full specializations can lead to a code maintenance nightmare. Part of

the original appeal of templates is that they enable the compiler to generate customized
code at compile/link time, working from a relatively small set of templated classes.
Adding many full specializations nullifies the software engineering advantages of such

an approach and leads to much more nearly-the-same code, with the problems inherent
in such proliferation inevitably following.

6 Conclusion

We have presented the design and implementation of a templated C++ class for small
vectors. The design balances the need for extensibility and flexibility on one hand with
the desire for high performance on the other. We hope that this report may enlighten

10

readers to some of the more interesting possibilities inherent to the C++ template mech-

anism. In the appendix that follows, we provide the actual source to our FM_vector

class and a few supporting classes. We encourage the reader to utilize the code to try

some experiments on his or her own. C++ compilers are only now starting to fully sup-

port the template standard. The classes presented in this report are only the beginning

of what is possible, given these new capabilities. The future should be interesting.

References

[Bli]

[ISO981

[Mey96]

[MHO0]

[M_O0]

[MS96]

[Mye95]

Blitz++. http ://oonumerics. org/blit z/.

ISO/IEC. C++ InternationalStandard, September 1998. 14882:1998(E).

S. Meyers. More Effective C++. Addison-Wesley Publishing Company,

Menlo Park, California, 1996.

P. Moran and C. Henze. The FEL 2.2 reference manual. Technical report,

National Aeronautics and Space Administration, 2000. NAS-00-007.

P. Moran, C. Henze, and D. Ellsworth. The FEL 2.2 user guide. Technical

report, National Aeronautics and Space Administration, 2000. NAS-00-002.

D. Musser and A. Saini. STL Tutorial and Reference Guide. Addison-

Wesley Publishing Company, Menlo Park, California, 1996.

N. C. Myers. Traits: a new and useful template technique. C++ Report,

June 1995. http ://www. cantrip, org/traits .html.

Appendix A

This appendix lists
FM_vector.h

FM_matrix.h

FM_timer.h

vector_tests.C

the C++ source code provided by the following files:

The header file providing our vector definitions.

The header file providing our matrix definitions.

A simple timer class used to produce the values in Table 2.

An example program that exercises FM_vector features.

11

// Emacs mode -*-c+*-*- //

#ifndef FMVECTOR_H

#define FMVECTOR_H

* NAME: FM_vector.h

* WRITTEN BY:

* Patrick Mora_

#include <iostream>

_include <math.h>

#ifndef FMCOORD

#define FMCOORD

typedef float FM_coord;

#endif

pmoran@nas.nasa.gov

template <int N, typename T> class FM_vector;

template <typename T>

struct FMtraits

(
typedef T element type;

};

template <int N, typename T>

struct FM_traits<FM_vector<N,T> >

{
typedef typename FMtraits<T>::elementtype element_type;

};

template <int N, typename T>

T FMdot(const FM_.vector<N,T>&, const FMvector<N,T>&);

template <typename T>

FMvector<3,T> FM_cross(const FMvector<3,T>&, const FMvector<3,T>&);

template <int N, typename T = FM_coord>

class FM vector

{
public:

nt_ector() (}
FM_vector(const T dat[]}

{
for (int i _ 0; i < N; i++)

d [i] = dat [i] ;

}
template <typename S>

explicit FM_vector(const FMvector<N,S>& dat)

{
for (int i z 0; i < N; i++}

d[i] = (T) dat[i];

}

T& operator[] (int i) [return d[i] ; }

const T& operator[] _int i) const { return d[iJ; }

operator const T*(} const

{
return (typename FMtraits<T>::elementtype ") d;

}

friend bool operator==(const FM_vector<N,T>& lhs,

const FM_vector<N,T>& rhs)

{

12

bool res = true;

for (int i = 0; i < N; i++) (

if (!(lhs[i] == rhs[i])) {

res = false;

break;

)
)
return res;

}

FMvector<N,T>& operator+=(const FM_vector<N,T>& v) {

for (int i = 0; i < N; i++)

d[i] += v[i] ;

return *this;

)

FM_vector<N,T>& operator-=(const FM_vector<N,T>& v) [

for (int i - 0; i < N; i++)

d[i] -= v[i] ;

return *this;

)

FM_vector<N,T>& operator*={typename FM_traits<T>::elementtype s) [

for (int i = 0; i < N; i++)

d[i] *= s;

return *this;

}

FM vector<N,T>& operator/=(typename FM_traits<T>::elementtype s) {

for (int i = 0; i < N; i÷+)

d[i] /= s;

return *this;

)

friend FM_vector<N,T> operator-(const FM_vector<N,T>& u)

{
T tmp [N] ;

for (int i = 0; i < N; i++)

trap[i] = -u[i] ;

return FM_vector<N,T>(tmp);

)

friend FM_vector<N,T> operator+(const FMvector<N,T>& lhs,

const FM_vector<N,T>& rhs)

{
T tmp [N] ;

for (int i _ 0; i < N; i++)

trap[i] = lhs[i] + rhs[i];

return FM_vector<N,T>(tmp);

)
friend FM_vector<N,T> operator-(const FM_vector<N,T>& lhs,

const FM_vector<N,T>& rhs)

(
T trap [N] ;

for (int i = 0; i < N; i++)

trap[i] = lhs[i] - rhs[i];

return FM_vector<N,T>(tmp);

)

friend FM vector<N,T>

operator_typename FM_traits<T>::eiement_type lhs,

const FMvector<N,T>& rhs)

{
T trap [N] ;

for (int i - 0; i < N; i++)

tmp[i] _ lhs * rhs[i] ;

return FM_vector<N,T>(tmp);

)

13

friend FMvector<N,T>

operator*(const FM_vector<N,T>& lhs,

typename FM_traits<T_::element_type rhs)

(
T trap IN] ;

for [int i = 0; i < N; i++]

trap[i] = lhs[i] * rhs;

return FMvector<N,T>(tmp);

}

private:

T d[N];

};

template <typename T>

class FM_vector<l,T>

{
public:

FM_vector () {}

FMvector(const T dat[]]

{
d[0] = dat[0] ;

}
template <typename S>

explicit FM_vector(const FM_vector<l S>& dat)

{
d[0] = (T) dat[0];

}
FM_vector(const T& a0)

{
d[0] = a0;

}

T& operator[] (int i] { return d[i] ;

const T& operator[] (int i) const { return d[i] ; }

operator const T*() const

(
return (typename FM_traits<T_::element_type*) d;

}

friend bool operator==(const FM_vector<l,T>& lhs,

co_st FMvector<l,T>& rhs]

{
return

lhs.d[0] == rhs.d[0];

}

FM_vector<l,T>& operator+=(const FMvector<l,T>& v) {

d[0] +: v[0] ;

return *this;

)

FM vector<l,T>& operator-=(const FMvector<l,T>& v) {

d[0] -= v[0] ;

return *this;

}

FM vector<l,T>& operator*=(typename FM_traits<T>::elementtype s) {

d[0] *= s;

return *this;

}

FM vector<l,T>& operator/=(typename FM_traits<T>:;element_type s) {

d[0] /= S;

return *this;

14

)

friend FMvector<l,T> operator-(const FM_vector<l,T>& u)

(
return FMvector<l,T>(-u.d[0]);

)

friend FM_vector<l,T_ operator+(const FM_vector, l,T>& lhs,

const FM vector<l,T>& rhs)

(
return FM_vector<l,T>{lhs.d[0] + rhs.d[0]);

)
friend FM_vector<l,T> operator-(const FM_vector<l,T>& ihs,

const FM vector<l,T>& rhs)

(
return FM_vector<l,T>[lhs.d[0] - rhs.d[0]);

)

friend FM vector<l,T>

operator*?typename FM_traits<T>::element_type lhs,

const FM_vector<l,T>& rhs)

{
return FM_vector<l,T>(lhs * rhs.d[0]);

}
friend FM vector<l,T>

operator*?const FM_vector<l,T>& lhs,

typename FM_traits<T>::element_type rhs]

{
return FM_vector<l,T>(lhs.d[0] * rhs);

}

friend T FM_dot<T>(const FMvector<l,T>&,

const FMvector<l,T>&);

private:

T d[l];

);

template <typename T>

class FM_vector<2,T>

(
public:

FMvector[) {)

FMvector(const T dat[])

(
d[0] = dat[0] ;

d[l] = dat[l];

)
template <typename S>

explicit FM_vector{const FMvector<2,S>& dat)

{
d[0] = (T) dat[0];

d[l] = (T) dat[l];

}
FM vector(const T& a0, const T& al)

{
d[0] = a0;

d[1] = al;

}

T& operator[] [int i) { return d[i] ; }

const T& operator[] (int i) const { return d[i] ;)

operator const T*() const

{
return (typename FM_traits<T>::elementtype*] d;

)

15

friend bool operator==(const FM_vector<2,T>& lhs,

const FM_vector<2,T>& rhs)

{
return

lhs.d[0] == rhs.d[0] &&

lhs.d[l] == rhs.d[l] ;

)

FMvector<2,T>& operator+=(const FMvector<2,T>& v) [

d[0] += v[0] ;

d[l] += v[l] ;

return *this;

)

FM vector<2,T>& operator-=(const FM_Vector<2,T>& v) {

d[0] -:viol;
d[l] -: v[l] ;

return *this;

}

FMvector<2,T>& operator*=(typename FM_traits<T>::element_type s) {

d[0] _= s;

d[l] *= s;

return *this;

)

FMvector<2,T>& operator/=(typename FMtraits<T>::elementtype s) {

d[0] /: s;

d[l] /: s;

return *this;

}

friend PMvector<2,T> operator-(const FM_vector<2,T>& u)

{
return FM_vector<2,T>(-u.d[0], -u.d[l_) ;

}

friend FMvector<2,T> operator+(const FM_vector<2,T>& lhs,

const FM_vector<2,T>& rhs)

{
return FM_vector<2,T>(lhs.d[0] + rhs.d[0],

lhs.d[l] + rhs.d[l]);

)
friend FMvector<2,T> operator-(const FM_vector<2,T>& lhs,

const FM_vector<2,T>& rhs)

{
return FM_vector<2,T>(lhs.d[0] - rhs.d[0],

lhs.d[l] - rhs.d[l]);

}

friend FMvector<2,T>

operator*(typename FM_traits<T>::element_type lhs,

const FM_vector<2,T>& rhs)

(
return FM_vector<2,T>(lhs * rhs.d[0],

lhs * rhs.d[l]);

}
friend FMvector<2,T>

operator*(const FM_vector<2,T>& lhs,

typename FM_traits<T>::elementtype rhs)

{
return FM_vector<2,T>(ihs.d[0] * rhs,

lhs.d[l] * rhs) ;

}

friend T FMdot<T>(const FM_vector<2,T>&,

const FM_vector<2,T>&)i

16

private :

T d[2] ;

);

template <typename T>

class FM_vector< 3, T>

(
public :

FM vector() {)

FM vector(const T dat []]

(
d [0] = dat [0] ;

d[l] = dat[l] ;

d[2] = dat[2] ;

}
template <typename S>

explicit FM_vector(const FM vector<3,S>& dat)

{
d[0] = (T] dat[0];

d[l] = (T] dat[l];

d[2] = (T) dat[2];

)
FM_vector(const T& a0, const T& al, const T& a2)

(
d[0] : a0;

d[l] = al;

d[2] = a2;

)

T& operator[] (int i) { return d[i] ;)

const T& operator[] (int i] const [return d[i] _ }

operator const T* () const

{
return [typename FM_traits<T>::element type*) d;

}

friend bool operator==(const FM_vector<3,T>& lhs,

const FM_vector<3,T>& rhs)

{
return

lhs.d[0] == rhs.d[0] &&

lhs.d[l] == rhs.d[l] &&

lhs.d[2] =_ rhs.d[2] ;

)

FM vector<3,T>& operator+=(const FM_vector<3,T>& v) {

d[0]+:v[0];
d[l] += v[l] ;

d[2] += v[2] ;

return *this;

}

FM vector<3,T>& operator-=(const FM_vector<3,T>& v) {

d[0] -:v[0];
d[1] -= v[l];

d[2] -= v[2] ;

return *this;

}

FM vector<3,T>& operator*=(typename FM_traits<T>: :element_type s) [

d[0] *= s;

d[l] *= s;

d[2] *= s;

return *this;

}

17

FM vector<3,T>& operator/=(typename FM_traits<T>: :element_type s) {

d[0]/: s;
d[l] /= s;

d[2] /= S;

return *this;

)

friend FM_vector<3,T> operator-(const FM_vector<3,T>& u)

(
return FM_vector<3,T>(-u.d[0] , -u.d[l] , -u.d[2]) ;

)

friend FM vector<3, T> operator+ (const FM_vector<3_ T>& lhs,

-- const FM_vector<3,T>& rhs)

{
return FM_vector<3,T>(lhs.d[0] + rhs.d[0],

lhs.d[l] + rhs.d[l] ,

lhs.d[2] ÷ rhs.d[2]);

)
friend FM_vector<3,T> operator-(const FM_vector<3,T>& lhs,

const FM_vector<3, T>& rhs)

(
return FM_vector<3,T>(lhs.d[0] - rhs.d[0],

lhs.d[l] - rhs.d[l],

lhs.d[2] - rhs.d[2]);

}

friend FM vector<3,T>

operator*_typename FM_traits<T> : :element_type lhs,

const FM vector<3,T>& rhs)

{
return FM vector<3,T>(lhs * rhs.d[0],

lhs * rhs.d[l],

lhs * rhs. d [2]) ;

)
friend FM vector<3,T,

operator*_const FM_vector<3, T>& lhs,

typename FM_traits<T> : :element_type rhs)

{
return FM_vector<3,T>(lhs.d[0] * rhs,

lhs.d[l] * rhs,

lhs.d[2] * rhs);

)

friend T FM dot<T> (const FM_vector<3, T>&,

-- const FM vector<3,T>&) ;

friend FM vector<3,T> FM cross<T>(const FM vector<3,T>&,

-- -- const FM_vector<3, T>&) ;

private :

T d[3] ;

};

template <typename T>

class FM_vector,4, T>

{
public

FM vector() {}

FM vector(const T dat [])

{
d[0] = dat[0] ;

d[l] = dat[l] ;

d[2] = dat[2] ;

d[3] = dat[3] ;

)
template <typename S>

18

explicit FM_vector(const FM_vector<3,S>& dat)

{

d[l] = (T) dat[l];

d[2] = (T) dat[2];

d[3] = (T) dat[3];

}
FM vector(eonst T& a0, eonst T& al, const T& a2, const T& a3)

{
d[0] = a0;

d[l] = al;

d[2] = a2;

d[3] = a3;

}

T& operator[] (int i) { return d[i] ;)

const T& operator[] (int i) const { return d[i] ;)

operator const T* () const

{
return {typename FM traits<T>::element_type*] d;

}

friend bool operator==(const FM_vector<4_T>& lhs,

const FM_vector_4, T>& rhs)

{
return

lhs.d[0] == rhs.d[0] &&

lhs.d[l] == rhs.d[l] &&

lhs.d[2] == rhs.d[2] &&

lhs.d[3] == rhs.d[3] ;

}

FM vector<4,T>& operator+=[eonst FM vector<4,T>& v) (

d[0] _:v[0];
dill += v61; ;

d[2] += v[2] ;

d[3] += v[3] ;

return *this;

)

FM vector<4,T>& operator-=(const FM vector<4,T>& v] {

[0]-: v[0];
d[l] -= v[l] ;

d [2] -: v [2] ;

d[3] -= v[3] ;

return *this;

)

FM vector<4,T>& operator*=(typename FM_traits<T>: :elementtype s] {

d[0] *:s;
d[l] *= S;

d[2] *= s;

d{99 _= s;

return *this;

}

FM vector<4,T>& operator/=(typename FM_traits<T>: :elementtype s) {

_[0] I:s;
d[l] /= s;

d[2] /= s;

d[3] /= s;

return *this;

}

friend FM_vector<4,T> operator-(const FM_vector<4,T>& u)

(
return FM_vector<4,T>(-u.d[0] , -u.d[l] , -u.d[2] , -u.d[3]) ;

)9

}

friend FM_vector<4, T> operator+ (const FM_vector<4, T>& lhs,

const FM_vector<4, T>& rhs)

(
return FM_vector<4,T>(lhs.d[0] + rhs.d[0],

lhs.d[l] + rhs.d[l] ,

lhs.d[2] + rhs.d[2] ,

lhs.d[3] + rhs.d[3]);

)
friend FM_vector<4,T> operator-(const FM_vector<4,T>& lhs,

const FM vector<4,T>& rhs)

{
return FM_vector<4,T>(lhs.d[0] - rhs.d[0],

lhs.d[l] - rhs.d[l],

lhs.d[2] - rhs.d[2] ,

lhs.d[3] - rhs.d[3]);

)

friend FM_vector<4, T>

operator* (typename FM_traits<T>: :element_type lhs,

const FM_vector<4,T>& rhs)

{
return FM_vector<4, T> (lhs * rhs.d [0] ,

lhs * rhs.d[l],

lhs * rhs.d[2],

lhs * rhs.d[3]);

)
friend FM vector<4,T>

operator*(const FM_vector<4,T>& lhs,

typename FM_traits<T> : :elementtype rhs)

{
return FM vector<4,T>{lhs.d[0] * rhs,

lhs.d[l] * rhs,

lhs.d[2] * rhs,

lhs.d[3] * rhs) ;

)

friend T FM_dot<T> (const FM_vector<4 _T,&,

const FM_vector<4, T_&)

private :

T d[4] ;

};

template <int N, typename T>

bool operator!=(const FM_vector<N,T>& lhs,

const FM_vector<N,T>& rhs)

{
return E(lhs == rha);

)

template <int N, typename T>

std::ostream& operator<<(std::ostream& lhs,

const FM_vector<N,T>& rhs)

(
lhs << "(";

lhs << rhs[0] ;

for (int i = I; i < N; i++)

lhs << ", " << rhs[i];

return lhs << ")";

}

template <int N, typename T>

T FM_dot(const FM_vector<N,T>& lhs, const FM_vector<N,T,& rhs)

2O

T res = lhs [0] * rhs[0] ;

for (int i = i; i < N; i++)

res += lhs[i] * rhs[i];

return res;

template <typename T>

T FM_dot(const FM_vector<l,T>& lhs,

const FM_vector<l,T>& rhs)

(
return

lhs.d[0] • rhs.d[0] ;

)

template <typename T>

T FM_dot(const FMvector<2,T>& lhs,

const FM_vector<2,T>& rhs)

(
return

lhs.d[0] * rhs.d[0] +

lhs.d[1] * rhs.d[l] ;

)

template <typename T>

T FM_dot(const FM_vector<3,T>& lhs,

const FM_vector<3,T>& rhs)

(
return

lhs.d[0] * rhs.d[0] +

lhs.d[l] * rhs.d[l] +

lhs.d[2] * rhs.d[2] ;

}

template <typename T>

T FM_dot(const FMvector<4,T>& lhs,

const FM vector<4,T>& rhs)

(
return

lhs.d[0] * rhs.d[0] +

lhs.d[l] * rhs.d[l] +

lhs.d[2] * rhs.d[2] +

lhs.d[3] * rhs.d[3] ;

}

template <typename T>

FM_vector<3,T> FM_cross(const FM_vector<3,T>& lhs,

const FM_vector<3,T>& rhs)

{
return FM_vector<3,T>(lhs.d[l] * rhs_d[2] - rhs.d[l] * lhs.d[2],

rhs.d[0] * lhs.d[2] - lhs.d[0] * rhs.d[2],

lhs.d[0] * rhs.d[l] - rhs.d[0] * lhs.d[l]);

)

template <int N, typename T>

T FM_mag(const FM_vector<N,T>& v)

(
return (T) sqrt(FMdot(v, v));

}

template <int N, typename T>

T FM distance2(const FM_vector<N,T>& lhs, const FM_vector<N,T>& rhs)

{
FM_veetor<N,T_ d = rhs - lhs;

2]

return FM dot(d, d);

}

template <int N.

FM_vector<N,bool> operator!(const FM_vector<N_bool>& u)

{
bool tmp[N];

for (int i = 0; i < N; i++)

trap[i] = !u[i] ;

return FM_vector<N.bool>(tmp);

}

template <int N>

FM_vector<N,bool> operator&&(const FM_vector<N,bool>& lhs,

const FM_vector<N,bool>& rhs)

{
bool tmp[N];

for (int i = 0; i < N; i++)

tmp[i] - lhs[i] && rhs[i];

return FM_vector<N,bool,(tmp);

)

template <int N>

FM_vector<N.bool> operatoril(const FM_vector<N,bool>& lhs,

const FMvector<N,bool>& rhs)

{
bool trap [N] ;

for (int i = 0; i < N; i++)

tmp[i] = lhs[i] II rhs[i];

return FM_vector<N,bool>(tmp);

)

template <int N>

FM_vector<N,bool> operator^(const FM_vect0r<N,bool>& lhs,

const FM_vector<N,bool>& rhs)

{
bool tmp[N];

for (int i = 0; i < N; i++)

tmp[i] = lhs[i] _ rhs[i];

return FMvector<N,bool>(tmp);

}

template <int N>

bool operator<=(const FM_vector<N,bool>& lhs,

const FM_vector<N,bool>& rhs)

{
bool res = true;

for (int i = 0; i < N; i++) {

if (lhs[i] && !rhs[i]) {

res = false;

break;

}
}
return res;

}

template <int N.

bool operator>=(const FM_vector<N.bool>& lhs,

const FM_Vector.N,bool>& rhs)

{
bool res = true;

for (int i = 0; i < N; i++) {

if (_lhs[i] && rhs[i]} {

res = false;

break;

)
)

22

return res;

)

typedef FM_vector<2

typedef FM_vector<2

typedef FM_vector<2

typedef FM_vector<3

typedef FM_vector<3

typedef FM_vector<3

typedef FMvector<4

typedef FM_vector<4

typedef FM_vector<4

int> FM_vector2i;

float> FM_vector2f;

double> FM vector2d;

int> FM_ve_tor3i;

float> FM_vector3f;

double> FM_vector3d;

int> FM_vector4i;

float> FM_vector4f;

double> FM_vector4d;

/*

* Copyright (c) 2000

* Advanced Management Technology, Incorporated

,

* Permission is hereby granted, free of charge,

* to any person obtaining a copy of this software

* and associated documentation files (the "Software"),

* to deal in the Software without restriction,

* including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense,

* and/or sell copies of the Software, and to permit

* persons to whom the Software is furnished to do so,

* subject to the following conditions:

* The above copyright notice and this permission

* notice shall be included in all copies or substantial

* portions of the Software.

* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY

* OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

* LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

* FOR A pARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

* EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE

* FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

* THE USE OR OTHER DEALINGS IN THE SOFTWARE.

* LOG:

* SLog S

*/
#endif

23

// Emacs mode -*-c++-*- //

#ifndef _FMMATRIX_H

#define _FM_MATRIX_H_

/*
NAME: FMmatrix.h

* WRITTEN BY:

* Patrick Moran

*/
#include "FMvector.h"

pmoran@nas.nasa.gov

template <int M, int N, typename T>

FM vector<N, T>

operator* (const FM_vector<M,T>& lhs,

const FM vector<M, FM vector<N,T> >& rhs)

{
T trap[N] , sum;

for [int n = 0; n < N; n+_) {

sum = (T) 0;

for (int m = 0; m < M; m++) {

sum += lhs [m] * rhs [m] [hi ;

)
trap[n] = sum;

}
return FM_vector<N, T> (tmp);

)

template <typename T>

FM vector<3, T>

operator* (const FM_vector<3, T>& lhs,

const FM_vector<3,FM_vector<3,T> >& rhs]

{
return FM_vector<3,T>(lhs[0] * rhs[0] [0] +

lhs[l] * rhs[l] [0] +

lhs[2] * rhs[2] [0],

lhs [0] * rhs [0] [i] +

lhs[l] * rhs[l] [I] +

lhs[2] * rhs[2] [1],

lhs[0] * rhs[0] [2] +

lhs[l] * rhs[l][2] +

lhs[2] * rhs[2] [2]);

)

template <typename T>

FM vector<4, T>

operator*(const FM_vector<4,T>& lhs,

const FM_vector<4,FM_vector<4,T> >& rhs)

(
return FM vector<4,T>{lhs[0] * rhs[0] [0] +

lhs[l] * rhs[l] [0] +

lhs [2] * rhs [2] [0] +

lhs[3] * rhs[3] [0],

lhs [0] * rhs [0] [i] +

lhs[l] * rhs[l] [i] +

lhs [2] * rhs [2] [I] +

lhs[3] * rhs[3] [I],

lhs [0] * rhs [0] [2] +

lhs [I] * rhs [1] [2] +

lhs[2] * rhs[2] [2] +

lhs[3] * rhs[3] [2] ,

lhs[0] * rhs[0] [3] +

lhs[l] * rhs[l][3] +

lhs[2] * rhs[2][3] +

lhs[3] * rhs[3] [3]);

24

template <int M, int N, typename T>

FM vector<M,T>

operator*(const FM_vector<M, FM_vector<N,T> >& lhs_

const FM_vector<N,T>& rhs)

{
T tmp [M] ;

for (int m = 0; m < M; m++) {

trap[m] _ FM_dot(lhs[m] , rhs) ;

)
return FM_vector<M,T>(tmp);

}

template <typename T>

FM_vector<3,T>

operator*(const FM_vector<3,FM_vector<B,T> >& lhs,

const FM_vector<3,T>& rhs)

{
return FM_vector<3,T>(FM_dot(lhs[0], rhs),

FM dot (lhs [i] , rhs) ,

FM dot (lhs [2] , rhs)) ;

)

template <typename T>

FM vector<4,T>

operator_(const FM_vector<4,FM_vector<4,T> >& lhs,

const FM_vector<4,T>& rhs)

{
return FM_vector<4,T>(FM_dot(lhs[0], rhs},

FM_dot (lhs [I] , rhs) ,

FM dot (lhs [2] , rhs),

FM_dot (lhs[3] , rhs)) ;

}

template <int M, int N, int P, typename T>

FM vector<M, FM_vector<P,T> >

operator*(const FM_vector<M,FM_vector<N,T> >& lhs,

const FM_vector<N,FM_vector<P,T> >& rhs)

{
FM_vector<P,T> tmp[M];

T sum;

for (int m = 0; m < M; m++) {

for (int p = 0; p < P; p++) {

sum = (T) 0;

for (int n = 0; n < N; n++) {

sum += lhs [m] [n] * rhs [n] [p] ;

}
tmp [m] [p] = sum;

}
}
return FM_vector<M, FM_vector<P,T> >(imp);

)

template <int M, int N, typename T>

FMvector<N, FM vector<M,T> •

FM_transpose(const FM_vector<M, FM_vector<N,T> >& in)

{
FM_vector<M,T> tmp[N];

for (int m = 0; m < M; m++) {

_or (int n = 0; n < N; n++) [

trap [n] [m] = in [m] [n] ;

}
}
return FM_vector<N, FM_vector<M,T> >(tmp);

}

template <typename T>

25

FM_vector< 3, FM vector<3, T> •

FM_transpose (const FM_vector<3, FM_vector<3, T> >& in)

(
return FM vector<3,FM_vector<3,T> >

(FM_vector<3,T>(in[0] [0], in[l] [0], in[2] [0]),

FM_vector<3,T>(in[0] [i], in[l] [I], in[2] [1]),

FM vector<3,T>(in[0] [2], in[1] [2], in[2] [2])) ;

}

template <int N, typename T>

T FM det(const FM_vector<N, FM_vector<N,T> >&);

template <int N, typename T>

T FM minor(const FM_vector<N,FM_vector<N,T> >& in, int row, int col)

(
FM_vector<N-I,FM vector<N-I,T> > trap;

int dst_row, dst_col;

dst row = 0;

for-(int src_row = 0; src_row < N; src_row++) {

if [src_row == row) continue;

dst col = 0;

for-(int src_col = 0; src col < N; srccol++) {

if (src_col == col) continue;

tmp[dst_row] [dst_col] = in[src_row] [src_col] ;

dst_col++;

)
dst_row++;

)
return FMdet(tmp);

)

template <int N, typename T>

T FM_det[const FM_vector<N,FM_vector<N,T> >& in)

{
T sum = [T) 0;

for (int n = 0; n < N; n++) {

T minor = FMminor(in, n, 0);

T cofactor = (n & I) ? -minor : minor;

sum += in[n] [0] * cofactor;

}
return sum;

)

template <typename T>

T FMdet(const FM_vector<l,FM_vector<l,T> >& in)

{
return in[0] [0] ;

}

template <typename T>

T FM_det(const FM_vector<2,FM_vector<2,T> >& in)

{
return in[0] [0] * in[l] [i] - in[l] [0] * in[0] [I] ;

)

template <typename T>

T FMdet(const FM_vector<3,FM_vector<3,T> >& in)

{
return

in[0] [0] * (in[l] [I] • in[2] [2] - in[2] [i] * in[l] [2]) -

in[l] [0] * (in[0] [I] * in[2] [2] - in[2] [i] * in[0] [2]) +

in[2] [0] * [in[0] [I] * in[l] [2] - in[l] [i] * in[0] [2]);

}

template <typename T>

T FM_det(const FM_vector<4,FM_vector<4,T> >& in)

(

26

// colur_ns 2,3

T r0rl = in[0] [2] * in[l] [3]

T r0r2 = in[0] [2] * in[2] [3]

T r0r3 = in[0] [2] * in[3] [3]

T rlr2 = in[l] [2] * in[2] [3]

T rlr3 = in[1] [2] * in[3] [3]

T r2r3 _ in[2] [2] * in[3] [3]

in[l] [2] * in[0] [3] ;

in[2] [2] * in[0] [3]

in[3] [2] * in[0] [3] ;

in[2] [2] * in[1] [3] ;

in[3] [2] * in[l] [3] ;

in[3] [2] * in[2] [3] ;

// column 0

T minor0 = in[l] [i]

T minorl = in[0] [i]

T minor2 = in[0] [i]

T minor3 = in[0] [I]

* r2r3 - in[2] [i] * rlr3 + in[3] [I] * rlr2;

* r2r3 - in[2] [I] * r0r3 + in[3] [I] * r0r2;

* rlr3 - in[l] [i] * r0r3 + in[3] [i] * r0rl;

* rlr2 - in[l] [I] * r0r2 + in[2] [i] * r0rl;

return

in [0] [0] * minor0 -

in[l] [0] * minorl +

in [2] [0] * minor2 -

in[3] [0] * minor3;

template <int N, typename T>

FM_vector<N, FM_vector<N,T> •

FM_adj(const FM_vector<N, FM_vector<N,T> >& in)

{
FM_vector<N, FM_vector<N,T> > res;

for (int row = 0; row < N; row++) {

for (int col = 0; col < N; col++) {

T minor = FM minor(in, row, col);

T cofactor = ((row + col) & I) ? -minor : minor;

res[col][row] = cofactor; // transpose

}
}
return res;

)

template <int N, typename T>

int FM_inv(const FM_vector<N, FM_vector<N,T> •& in,

FM_vector<N, FMvector<N,T> >* out)

(
T det = FM_det(in);

if (det == (T) 0)

return i;

*out = (T) 1 / det * FM_adj (in);

return 0;

)

template <typename T>

int FM_inv(const FMvector<2,FM_vector<2,T> >& in,

FM_veetor<2,FM_vector<2,T> >* out)

{
T det = FMdet(in);

if (det -_ (T) 0)

return i;

Tinv det = (T) I / det;

(*out_[0] [0] = inv_det * in[l] [I];

(*out) [0] [I] = inv det * -in[0] [i] ;

(*out) [i] [0] = inv det * -in[l] [0] ;

(*out) [I] [I] = inv det * in[0] [0] ;

return 0;

}

template _typename T•

int FM_inv(const FM_vector<3,FM_vector<3,T> >& in,

FM_vector<3,FM_veetor<3,T> >* out)

{

27

// column 0

T minor0 = in

T minorl = in

T minor2 = in

[i] [I] * in[2] [2] - in[2] [I] * in[l] [2] ;

[0] [I] * in[2] [2] - in[2] [I] * in[0] [2] ;

[0] [I] * in[l] [2] - in[1] [I] * in[0] [2] ;

T det =

in [0] [0] * mlnor0 -

in[l] [0] * minorl +

in[2] [0] * minor2;

if (det == (T) 0)

return I;

Tinv det = (T] 1 / det;

(*out)

(*out)

(*out)

(*out)

(*out)

('out)

(*out)

(*out)

('out)

[0] [0] = inv det * mlnor0;

[0] [i] = inv_det * -minorl;

[0] [2] = inv det * minor2;

[i] [0] = inv_det * (in[2] [0] * in[l] [2] - in[l] [0] * in[2] [2]);

[i] [i] = inv_det * (in[0] [0] * in[2] [2] - in[2] [0] * in[0] [2]);

[i] [2] = inv_det * [in[l] [0] * in[0] [2] - in[0] [0] * in[l] [2]);

[2] [0] = inv det * (in[l] [0] * in[2] [i] - in[2] [0] * in[l] [I]);

[2] [I] = inv det * (in[2] [0] * in[0] [i] - in[0] [0] * in[2] [I]);

[2] [2] = inv det * (in[0] [0] * in[l] [i] - in[l] [0] * in[0] [i]) ;

return 0;

template <typename T>

int FM_inv(const FM_vector<4,FM_vector<4,T> >& in,

FM_vector<4,FM_vector<4,T> >* oHt)

{
// compute minors column by column, but fill in (*out) row

// by row to effectively transpose

// colu_ns 2,3

T r0rl = in[0] [2] * in[l] [3] - in[l] [2] * in[0] [3] ;

T r0r2 = in[0] [2] * in[2] [3] - in[2] [2] * in[0] [3];

T r0r3 = in[0] [2] * in[3] [3] - in[3] [2] * in[0] [3];

T rlr2 = in[l] [2] * in[2] [3] - in[2] [2] * in[l] [3];

T rlr3 = in[l] [2] * in[3] [3] - in[3] [2] * in[l] [3] ;

T r2r3 = in[2] [2] * in[3] [3] - in[3] [2] * in[2] [3];

// column 0

T minor0 = in[l] [i]

T minorl = in[0] [I]

T minor2 = in[0] [i]

T minor3 = in[0] [i]

T det =

in [0] [0] * minor0 -

in[l] [0] * minorl +

in[2] [0] * minor2 -

in[3] [0] * minor3;

if [det == (T] 0)

return 1 ;

Tinv det = (T] 1 / det;

(*out) [0] [0] = inv_det * minor0;

[*out) [0] [i] = inv det * -minorl;

(*out) [0] [2] = inv det * minor2;

(*out] [0] [3] = inv_det * -minor3;

// column i

minor0 = in[l] [0] * r2r3 - in[2] [0] * rlr3 + in[3] [0] * rlr2;

minorl = in[0] [0] * r2r3 - in[2] [0] * r0r3 + in[3] [0] * r0r2;

minor2 = in[0] [0] * rlr3 - in[l] [0] * r0r3 + in[3] [0] * r0rl;

* r2r3 - in[2] [i] * rlr3 + in[3] [i] * rlr2;

* r2r3 - in[2] [i] * r0r3 + in[3] [i] * r0r2;

* rlr3 - in[1] [i] • r0r3 + in[3] [i] * r0rl;

* rlr2 - in[1] [i] * r0r2 + in[2] [i] * r0rl;

28

minor3 _ in[0] [0] * rlr2 - in[l] [0] * r0r2 + in[2] [0] * r0rl;

(*out) Ill [0] = Inv det * -minor0;

[*out) [I] [I] = inv_det * minorl;

(*out)[l][2] = inv det * -minor2;

(*out)[l][3] = inv det * minor3;

// columns 0,i

r0rl = in[0] [0] * in[l] [i] - in[l] [0] * in[0] [I]

r0r2 = in[0] [0] * in[2] [i] - in[2] [0] * in[0] [i]

r0r3 = in[0] [0] * in[3] [I] - in[3] [0] * in[0] [i]

rlr2 _ in[l] [0] * in[2] [I] - in[2] [0] * in[l] [i]

rlr3 = in[l] [0] * in[3] [i] - in[3] [0] * in[l] [i]

r2r3 = in[2] [0] * in[3J [I] - in[3] [0] * in[2] [I]

// column 2

minor0 = in[l] [3] * r2r3

minorl = in[0] [3] * r2r3

minor2 = in[0] [3] * rlr3

minor3 = in[0] [3] * rlr2

- in[2] [3] * rlr3 + in[3] [3] * rlr2;

- in[2] [3] * r0r3 + in[3] [3] * r0r2;

- in[l] [3] * r0r3 + in[3] [31 * r0rl;

- in[l] [3] * r0r2 + in[2] [3] * r0rl;

(*out) J2][0] - inv det * minor0;

(*out) [2] [i] = inv det * -minorl;

{*out) [2][2] = inv det * minor2;

(*out) [2] [3] = invdet * -minor3;

// column 3

minor0 = in[l] [2] * r2r3 - in[2] [2] * rlr3 + in[3] [2] * rlr2;

minorl = in[0] [2] * r2r3 - in[2] [2] * r0r3 + in[3] [2] * r0r2;

minor2 = in[0] [2] * rlr3 - in[l] [2] * r0r3 + in[3] [2] * r0rl;

minor3 = in[0] [2] * rlr2 - in[l] [2] * r0r2 + in[2] [2] * r0rl;

(*out) J3][0] - inv det * -minor0;

(*out) [3] [i] = inv_det * mlnorl;

(*out)[3][2] = inv det * -minor2;

(*out)[3][3] = inv det * minor3;

return 0;

template <int N, typename T•

void FM_identity(FMvector<N,FM_vector<N,T> >* OUt)

(
T zero = (T) 0;

T one = (T) I;

for (int row = 0; row < N; row++)

for (int col = 0; col < N; col++)

(*out)[fowl[col] = row _= col ? one : zero;

)

typedef FMvector<2,FM_vector<2

typedef FMvector<2,FM_vector<3

typedef FMvector<3,FM_vector<2

typedef FMvector<3,FM_vector<3

typedef FMvector<3,FM_vector<3

typedef FMvector<4,FMvector<4

_ypedef FMvector<4,FMvector<4

float> > FMmatrix22f;

float> > FM_matrix23f;

float> • FMmatrix32f;

float• • FM_matrix33f;

double• • FM_matrix33d;

float> • FM_matrix44f;

double• • FM_matrlx44d;

/*

* Copyright (c) 2000

* Advanced Management Technology, Incorporated

* Permission is hereby granted, free of charge,

* to any person obtaining a copy of this software

* and associated documentation files (the "Software"]

29

* tO deal in the Software without restriction,

* including without limitation the rights to use,

* copy, modify, merge, publish, distribute, sublicense,

* and/or sell copies of the Software, and to permit

* persons to whom the Software is furnished to do so,

* subject to the following conditions:

* The above copyright notice and this per_aission

* notice shall be included in all copies or substantial

* portions of the Software_

,

* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY

* OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

* LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

* EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE

* FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

* THE USE OR OTHER DEALINGS IN THE SOFTWARE.

t

* LOG :

* SLog S

*/
#endif

3O

/I Emacs mode -*-c++-*- //

#ifndef FM TIMER_H_

#define FM TIMER_H

/*
* NAME: FM timer.h

* WRITTEN BY:

* Patrick Moran pmoran@nas.nasa.gov

*/
#include <sys/time.h>

class FM timer

{
public:

FM timer() { reset(); }

void reset() (total = 0.0; }

void start() { gettimeofday(&start_tv, (struct timezone *) 0);)

void stop()

{
struct timeval stop_tv;

gettimeofday(&stop_tv, (struct timezone *) 0);

long dts= stop_tv.tvsec - start tv.tv_sec;

long dtus = stop_tv.tv_usec - start_tv.tv_usec;

double dt = (double) dts+ (double) dtus * 1.0e-6;

// round to milliseconds

long millisec _ (long) (dt * 1000.0 + 0.5);

total += millisec * 1000.0;

)
double elapsed() { return total; }

private:

struet timeval start_iv;

double total;

};

/*
* Copyright (c) 2000

* Advanced Management Technology, INcorporated

* Permission is hereby granted, free of charge,

* to any person obtaining a copy of this software

* and associated documentation files (the "Software"),

* to deal in the Software without restriction,

* including without limitation the rights to use,

* copy, modify, merge, publish, distribute, sublicense,

* and/or sell copies of the Software, and to permit

* persons to whom the Software is fuz-nished to do so,

* subject to the following conditions:

* The above copyright notice and this permission

* notice shall be included in all copies or substantial

* portions of the Software.

* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY

* OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

* LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

* EVENT SHA_L THE ALrTHORS OR COPYRIGHT HOLDERS BE LIABLE

* FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

* THE USE OR OTHER DEALINGS IN THE SOFTWARE.

,

* LOG:

* SLogS

*/
#endif

3]

/*

* NAME: vector tests

* WRITTEN BY:

* Patrick Moran pmoran@nas.nasa.gov

*/
#include <assert.h>

#include <stdlib.h>

#include "FM vector.h"

#include "FM matrix, h"

#include "FM timer.h"

void random init(int* i)

{
*i = rand() % 10 - 5;

}

void random_init(float* f)

{
*f = (float) (rand(] % 20 - I0);

)

void random init(double* d)

{
*d = (double) (rand() % 20 - I0);

)

template <int N, typename T>

void random init(FM_vector<N,T>* v)

{
for (int i = 0; i < N; i++)

random init (& ((*v) [i])) ;

)

template <typename T>

T max_mag(T t)

(
return t >= [T) 0 ? t : -t;

)

template <int N, typename T>

typename FM tralts<T>::elementtype

max mag(const FM_vector<N,T>& v)

(
typename FM_traits<T>::element_type res =

[typename FM_traits<T>::elementtype) 0;

for (int i = 0; i < N; i++) {

typename FM_traits<T>::element_type e = max_mag(v[i]);

if (e > res)

res = e

)
return res;

}

inline static double fmax(double a, double b)

{
return a _ b ? a : b;

}

template <int N, typename T>

void general_tests()

{
int i;

T a[N];

for (i = 0; i < N; i++)

32

random init (&a [i]] ;

//FM_vector(conat T[])

//T& operator[] (int)

FM_vector<N,T> u (a] ;

for (i = 0; i < N; i++)

assert(u[i] == a[i]) ;

for (i = 0; i < N; i++]

u[i] = u[i];

for (i z 0; i < N; i++)

assert (u [i] == a[i]);

//const T& operator [] (int) const

const FM_vector<N,T> cu = u;

for (i = 0; i < N; i++]

assert (u [i] == cu [i]] ;

//FM_vector (T, T)

//friend bool operator== {const FM_vector<N, T>&,

// const FM_vector<N, T >&)

//friend bool operator != (const FM_vector<N, T>&,

// const FM_vector<N, T>&]

assert (u == u] ;

assert (! (u != u)) ;

FM vector<N,T> v = u;

while (u == v]

random init (&v) ;

assert (u != v) ;

//friend FM_vector<N, T> operator+ (const FM_vector<N, T>&,

// const FM_vector<N, T>&)

FM_vector<N,T> w = u + v;

for (i = 0; i < N; i++)

assert(w[i] == u[i] + vii]I;

//friend ostream& operator<< (ostream&,

// const FM vector<N, T>&)

//std: :cout << v << endl;

//FM_vector<N,T> operator* (typename FM_traits<T> : :element_type,

// const FM vector<N,T>&]

typename FM_traits<T>: :element_type s = 0;

random init (&s) ;

v = S * u;

for (i = 0; i < N; i++)

assert (v [i] == s * u[i]];

//FM_vector<N,T> operator*(const FM_vector<N,T>&,

// typename FM_traits<T, : :element_type)

v = u * S;

for (i = 0; i < N; i++)

assert (v [i] == u[i] * s);

random init (&u] ;

random init (&v] ;

//friend FM_vector<N,T> operator- (const FM_vector<N,T>&]

w = -u;

for (i = 0; i < N; i++)

assert (w [i] == -u [i]) ;

//friend FM_vector<N, T> operator- (const FM_vector<N, T>&,

// const FM_vector<N, T>&)

w = u - v;

for (i = 0; i < N; i++)

assert(w[i] == u[i] - v[i]) ;

33

template <int N, typename T>

void vector of scalars_tests()

[
int i;

int sum;

FM_vector<N,T> u_ v;

random_init(&u);

random init(&v);

//friend T FM_dot(const FM_vector<N,T>&,

// const FMvector<N,T>&)

sum = 0;

for (i = 0; i < N; i++)

sum += u[i] • v[i];

assert(sum == FM_dot(u, v));

//friend FM_vector<3,T> FMcross(const FM_vector<3,T>&,

// const FM_vector<3,T>&)

T t;

FM vector<3,T> t3, u3, v3, w3, x3;

random_init(&u3);

random_init(&v3];

random_init(&w3];

random_init(&x3);

// u3 x (v3 x w3) == v3(u3 . w3) - w3(u3 . v3)

t3 = FM cross(u3, FM cross(v3, w3)] -

(v3 *--FM dotCu3, w_) - w3 * FM_dot(u3, v3));

assert(maxmag(t3) == 0);

// (u3 x v3) x w3 == v3(u3 . w3) - u3(v3 . w3)

t3 = FM_cross(FMcross(u3, v3), w3) -

(v3 * FM dot(u3, w3) - u3 * FM_dot(v3, w3));

assert(max_mag(t3) == 0);

// (u3 x v3) . (w3 x x3) == (u3 . w3) Iv3 . x3) - (u3 . x3) (v3 . w3)

t = FM dot(FM cross(u3, v3], FM cross(w3, x3)) -

(FM_dot(u3,--w3) * FM_dot(v3, _3) - FM_dot(u3, x3) * FM_dot(v3, w3));

assert(t == 0);

// u3 x (v3 x w3) + v3 x (w3 x u3) + w3 x (u3 x v3) == 0

t3 = FM cross(u3, FM_cross(v3, w3)) +

FM cross(v3, FM_cross(w3, u3)) + FM_cross(w3, FM_cross(u3, v3)];

asse_t(maxmag(t3) -_ 0);

)

template <int N, typename T>

void real vector of scalars_tests()

T
int i;

double epsilon = le-5;

FM_vector<N,T> u;

//friend T FM_magCconst FM_vector<N,T>&)

random_init(&u);

double dsum = 0.0;

for (i - 0; i < N; i++)

dsum += (doublet (u[i] * u[i]);

assert{fabs(sqrt(dsum) - (double) FM_mag(u)) < epsilon);

)

template <int M, int N, typename T>

void vector matrix_tests()

{

34

FM_vector<M,T> uM, vM;

FMvector<N,T> uN, vN;

FM_vector<M, FM_vector<N,T> > mMN;

FM_vector<N, FM_vector<M,T> • mNM;

FM_vector<M, FM_vector<M,T> > mMM, miMM, iMM;

FM_vector<N, FM_vector<N,T> • mNN;

//Let P = M + N + 3

FM_vector<M, FM_vector<M+N+3,T> > mMP;

FM__vector<N, FM_vector<M+N+3,T> > mNP;

FM_vector<M+N+3,FM_vector<M,T> • mPM;

int row, col;

T det;

//FM_vector<N,FM_vector<M,T> •

//FM_transpose(const FM_vector<M, FM_vector<N,T> >& in)

random_init(&mMN);

mNM = FM_transpose(mMN);

for (int row = 0; row < M; row++)

for (int col = 0; col < N; col++)

assert (mMN[row] [col] == mNM[col] [row]) ;

//FM vector<N.T>

//operator*(const FM_vector<M,T>& lhs,

// const FM_vector<M, FM_vector<N,T> >& rhs)

//FMvector<M,T•

//operator*(const FM_vector<M, FM_vector<N.T> >& lhs,

// const FM_vector<N,T>& rhs)

random init(&vM);

random_init(&mMN);

uN = vM * mMN - FM_transpose(mMN) * vM;

assert(maxmag(uN) == (T) 0);

//FM_vector<M, FM_vector<P,T• •

//operator_(const FM_vector<M, FM_vector<N,T> >& lhs,

// const FM_vector<N,FMvector<P,T> >& rhs)

random init(&mMN);

random init (&mNP) ;

roMP = _MN * mNP;

mPM = FM_transpose (mNP) * FM_transpose (mMN) ;

assert(maxmag(mMP - FM_transpose (mPM]) == (T) 0) ;

//FM_vector<M,FM_vector<M,T> • FM_identity()

FM_identity(&mMM);

for (row = 0; row < M; row++)

for (col - 0; col < M; col++)

assert(mMM[row][col] == (row == col ? (T) 1 : (T) 0))

//T FM det(const FM_vector<N, FM_vector<N,T> >&);

FM_identity(&mMM);

det = FM det[mMM);

assert[det == IT) i);

const T K = (T) 7;

mMM[0] [0] = K;

det = FM det(m_M);

assert (det =ffi K);

random inlt(&mMM);

assert_FM_det(mMM) - FM_det(FM_transpose(mMM)) == (T) 0)

//FM_vector.N,FM_vector<N.T> >

//FM_adj(const FM_vector<N,FMvector<N,T• >& in)

random init{&mMM);

FMidentity [&iMM);

det = FM det(mMM);

assert(maxmag(FM_adj(mMM) * mMM det * iMM) == 0);

35

template <int M, typename T>

void real_vector matrix tests ()

(
int row, res;

T epsilon = (T) le-4;

T det ;

const T K = (T) 7;

FM_vector<M,T> uM, vM;

FM_vector<M, FM_vector<M,T> > mMM, miMM, iMM;

//int FM inv(const FM_vector<N, FM_vector<N,T> >& in,

// FM_vector<N, FM_vector<N, T> >* out)

det = FM det (mMM) ;

while (det-- (T) 0) [

random_init {&mMM) ;

det = FMdet (mMM) ;

}
res = FM_inv(mMM, &miMM) ;

assert (res == 0) ;

IImMM[0] = K * mMM[M - 11;

//res = FM inv(mMM, &miMM);

//assert (res E= 0) ;

random init (&mMM) ;

det = FM det (mMM) ;

while (det .z (T) 0) {

random_init (&mMM) ;

det = FM det (mMM) ;

)
for (row = 0; row < M; row++)

mMM[row] [0] = K * mMM[row] [M - I_ ;

res = FM inv(m_g, &miMM);

assert (res := 0) ;

//FM_vector<M, FM_vector<P, T> >

//operator* (const FM_vector<M, FM_vector<N, T> >& lhs,

// const FM vector<N, FM_vector<P, T> >& rhs)

FM identity (&iMM) ;

random init (&mMM) ;

res = FM inv(mMM, &miMM) ;

while (res '= 0) {

random Init {&mMM) ;

res = FM_inv(mMM, &miMM) ;

}
epsilon = le-3;

assert (max mag(mMM * miMM - iMM) < epsilon);

assert(max mag(miMM * mMM - iMM) < epsilon);

//int FM_inv{const FM_vector<N,FM vector<N,T> >& in,

// FM vector<N, FM_vector<N, T> >* out)

det = FM det (m_4) ;

while (det == (T) 0) {

random_init (&mMM) ;

det = FMdet (mMM] ;

)
res = FM_inv (m_4, &miMM) ;

assert(res -= 0);

mMM[0] = K * mMM[M - i];

res = FM_inv(n%MM, &miMM);

assert(res _= 0);

random init (&mMM) ;

det = FM det (mY_) ;

while (det == (T) 0) [

36

random_init (&mMM) ;

det = FM det (mMM) ;

)
for (row = 0; row < M; row++)

mMM[row] [0] = K * mMM[row] [M - i] ;

res = FM inv[mMM, &miMM) ;

assert(res != 0);

//FM_vector<M,FM_vector<P,T> >

//operator*(const FMvector<M, FM_vector<N,T> >& lhs,

// const FM_vector<N, FM_vector<P,T> >& rhs)

FM_identity(&iMM);

random_init(&mMM);

res = FM inv(m]_4, &miMM);

while (res != 0) {

random init(&mMM);

res = FM_inv[mMM, &miMM) ;

)
epsilon = le-3;

assert(maxmag(mMM * miMM - iMM) < epsilon)

assert(max_mag(miMM * mMM - iMM) < epsilon)

template <typename T>

Inline static int sign(T t)

{
return t • (T) 0 ? 1 : (t < (T) 0 ? -i : 0)

}

template <typename T>

//inline

int orient(const FM_vector<3,T•& a,

const FM_vector<3,T>& b,

const FM_vector<3,T>& c,

const FM_vector<3,T>& d)

(
return sign(FM_dot(d - a, FM_cross(b - a, c - a)));

)

template <typename T>

void orient_tests(const FM_vector<3,T>&)

{
int i, res = 0;

const int N STMTS z I;

const int N TRIALS = I0000000;

FM timer timer;

do_ble total;

FM_vector<3,T> a, b, C, d;

random init(&a);

random init(&b];

random_init(&c];

random init(&d);

res = O;

timer.start();

for (i = 0; i < N_TRIALS; i÷+) {

res ÷= orient(a, b, c, d);

}
t imer. stop () ;

res = res;

total = timer.elapsed();

std::cout << total / (double) (N_TRIALS * N_STMTS)

<< " usec / orient" << std::endl;

)

37

void timing_tests()

{
orient_tests(FM_vector<3,float>());

orient_tests(FM_vector<3,double_());

)

int main()

{
for (int i = 0; i < I000; i++) {

general_tests<l,int_();

general_tests<2,int,();

general_testa<3,int>();

general_teata<4,int>();

general_tests<17,int>();

general tests<4,FM_vector<3,int> >();

general_tests<5,FM_vector<7,int> >();

general_tests<2,FM_vector<4,FM_vector<3,int> • >();

general_tests<B,FM_vector<5,FM_vector<7,int> _ >();

vector_of_scalarstests<2,int>();

vector_of_scalarstests<3,int>();

vector of scalars tests<4,int>();

vector_of_scalarstests<5,int>();

real vector of scalars_tests<2,double>();

real_vectorof_scalarstests<3,double>();

real vector of scalars_tests<4,double>();

real_vector of scalars_tests<5,double>();

vector_matrix_tests<2,2,int>();

vector_matrix_tests<2,3,int>();

vector_matrix_tests_2,4,int>();

vector_matrix_tests<2,5,int>();

vector_matrix=tests<3,2,int>();

vector_matrixtesta<3,3,int>();

vector_matrixtests<3,4,int>();

vector_matrixtests<3,5,int>();

vector_matrlx_tests<4,2,int>();

vector_matrix_tests<4,3,int>();

vector_matrix_tests<4,4,int>();

vector_matrix_tests<4,5,int>(];

vector_matrix=tests<5,2,int>();

vector_matrix_tests<5,3,int>();

vector_matrix_tests<5,4,int>();

vector_matrixtests<5,5,int>();

real vector_matrix_tests<2,double>(l;

real vector matrix tests<3,double>();

real_vector_matrix_tests<4,double>();

real_vector_matrix_tests<5,double>();

)

timing_tests();

std::cout << "OK" << std::endl;

return 0;

)

/*

* Copyright {c) 2000

* Advanced Management Technology, Incorporated

* Permission is hereby granted, free of charge,

38

* tO any person obtaining a copy of this software

* and associated documentation files (the "Software"],

* to deal in the Software without restriction,

* including without limitation the rights to use,

* copy, modify, merse, publish, distribute, sublicense,

* and/or sell copies of the Software, and to permit

* persons to whom the Software is furnished to do so,

* subject to the following conditions:

* The above copyright notice and this permission

* notice shall he included in all copies or substantial

* portions of the Software.
.

* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY

* OF A_Ff KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

* LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

* FOR A pARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

* EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE

* FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

* THE USE OR OTHER DEALINGS IN THE SOFTWARE.

.

* LOG:

* SLogS

*/

39

